Metal-mining pollution impacts 23 mn people globally: Study

An estimated 23 million people around the world live on flood-plains contaminated by potentially harmful concentrations of toxic waste from metal-mining activity, according to a study.

The research, published recently in the journal Science, provides new insights into the extensive impact of metal mining contamination on rivers and floodplains across the world.

Using a new georeferenced global database of 185,000 metal mines and employing a combination of process-based modelling and empirical testing, the research assessed the global scale of metal mining contamination in river systems and its repercussions for human populations and livestock.

The study modelled contamination from all known active and inactive metal mining sites, including tailings storage facilities used to store mine waste. It looked at potentially harmful contaminants such as lead, zinc, copper, and arsenic, which are transported downstream from mining operations, and often deposited along river channels and floodplains for extended periods.

Our new method for predicting the dispersal of mine waste in river systems worldwide provides governments, environmental regulators, the mining industry and local communities with a tool that, for the first time, will enable them to assess the offsite and downstream impacts of mining on ecosystem and human health, said Professor Mark Macklin, from the University of Lincoln, UK.

We expect that this will make it easier to mitigate the environmental effects of historical and present mining and, most importantly, help to minimise the impacts of future mining development on communities, while also protecting food and water security, said Macklin, who led the research.

Released against the backdrop of growing demand for metals and minerals to feed the demands of the green energy transition, the new results highlight the widespread reach of the contamination, affecting approximately 479,200 kilometres of river channels and encompassing 164,000 square kilometres of floodplains on a global scale.

According to the findings, approximately 23.48 million people reside on these affected floodplains, supporting 5.72 million livestock and encompassing over 65,000 square kilometres of irrigated land.

Due to a lack of available data for several countries, the team behind the study believe these numbers to be a conservative estimate.

Various pathways exist for humans to become exposed to these contaminant metals including from direct exposure through skin contact, accidental ingestion, inhalation of contaminated dust, and through the consumption of contaminated water and food grown on contaminated soils, the researchers said.

This poses an additional hazard to the health of urban and rural communities in low-income countries and communities dependent on these rivers and floodplains, especially in regions already burdened with water-related diseases, they said.

In industrialised nations in Western Europe, including the UK, and the US, this contamination constitutes a major and growing constraint to water and food security, compromises vital ecosystem services, and contributes to antimicrobial resistance in the environment.

“Rapid growth in global metal mining is crucial if the world is to make the transition to green energy,” said Professor Chris Thomas who led the analysis and modelling.

“Much of the estimated global contamination we have mapped is a legacy from the industrial era rightly, modern mining is being encouraged to prioritise environmental sustainability,” Thomas said.

Professor Deanna Kemp from the University of Queensland in Australia, who was part of the team behind the study, called the results sobering.”

“At a basic level, these findings remind us that mining can cause extensive downstream damage over long periods of time. Many people benefit from mining and metals, but we must do more to understand and prevent the negative effects on people who live and work in affected areas, Kemp added.